Power Requirements for Multi-Bit Per Cell NAND Flash

Terry Grunzke
Micron Technology, Inc.
Agenda

- Technology differences in SLC, MLC-2, MLC-3, and MLC-4
- Power consumption considerations
- Summary
Technology Differences

- **SLC**
 - Single-level cell
 - One bit per cell

- **MLC**
 - Multi-level cell
 - Two bits per cell (MLC-2)
 - Three bits per cell (MLC-3)
 - Four bits per cell (MLC-4)

- **Endurance**
 - SLC typically 10–20 times better than MLC-2
 - MLC-2 is much better than MLC-3 and MLC-4
Technology Differences

- **Performance**
 - Significantly better performance with fewer bits per cell

- **Price**
 - SLC-based products greater than 2X the $/GB over MLC-2
 - Some cost advantages with more bits per cell
NAND Flash Cell Vt distributions

Population

SLC

MLC-2

MLC-3

MLC-4
Power Consumption Considerations

- Chip reduction for equal density
- Controller power considerations
- Higher program voltage
- Array operation
- Standby power
Chip Reduction for Equal Density Applications

- True that the same number of bits uses less space on silicon
- Does not necessarily result in fewer chips per system
 - Would require half densities for MLC-3
 - Yet to be seen for MLC-4
- Smaller die does mean possible lower bitline and tub capacitance, which should result in lower power consumption during precharge
Controller Power Consumption Considerations

- Tradeoffs in latency/bandwidth vs. power consumption
- Even if assume double number of gates, this amount will be minimal in relation to overall NAND read energy consumption
Higher Program Voltage

- Higher wordline voltage required does not significantly contribute to overall program current draw
- Capacitance of wordline is dwarfed by capacitance of bitlines
Longer Array Operation Times

- Much longer array operations will cause increased energy usage
- Similar peak and average power will be drawn during the array operations, but for a longer period due to requirement for finer Vt placement
- In system, performance vs. power consumption tradeoffs exist
Comparing Raw NAND

Joules per Gb

- Write Energy
- Read Energy
- Erase Energy

SLC: 2.01, 0.02, 0.05
MLC-2: 5.01, 4.91, 5.12
MLC-3: 11.68, 5.29
Standby Power Considerations

- Only active energy will be different for multi-bit per cell technology
- Standby power consumption will be the same
Summary

- MLC-3 and MLC-4 NAND Flash power consumption will be increased primarily due to the longer program times required.
- System design will require decisions for tradeoff on power consumption vs. performance.