High-Speed NAND Flash

Design Considerations to Maximize Performance

Presented by: Robert Pierce
Sr. Director, NAND Flash
Denali Software, Inc.
The High-Speed NAND offering will have a profound effect on capacity vs. performance as well as BOM.
The NAND Flash interface has been a bottleneck in achieving high performance for system applications.

- As page size increases to 4KB, the SLC tR time of ~20 µs is completely unbalanced with the data transfer time of ~100 µs in legacy/native NAND.

High performance applications (i.e. Cache, SSD’s, etc.) have been unable to show the true capability for random operations required by today’s systems and OS’s.

Changes to the flash device architecture will have even more effect for these new devices:

- Page size increases
- Multi Plane
- Additional Spare area for Metadata
- Enhanced commands
Performance Impact

- Toggle-based MLC NAND
- Eight controllers
- 4 CE
- 8K page size

- Asynchronous MLC NAND
- Eight controllers
- 4 CE
- 8K page size
Key Aspects to Higher Interface Performance Improvements

- Increase the number of commands to the flash device
 - Maximizes the number of transactions for a device
 - Multi-plane architectures are very useful
- Interlacing, by CE or LUN
 - CE interlacing uses more pins
 - Polling mode not as useful
 - LUN (Logical Unit Addressing) very useful, with pin reduction
- Transaction size
 - 8K page size can increase Read BW
Parallelism using Chip Enables

- 4CS Interleave
- 4KB Page size (transfer time is \(~30\text{us} - 4096\times 7.5\text{ns}\))
- Program time \(~800\text{us}\) typical
- Dual plane support (T1 is transfer for plane 1 and T2 is transfer for plane 2)

- 860 \text{us} Program Cycle = One program time + two transfer times (800+30+30)
- 32 Kbytes data written in one program cycle
- 37 MBps Theoretical max throughput per program cycle
- 20\% controller and flash software overhead
- 30 MBps estimated throughput
Example of LUN Interleaving

- **4CS with LUN Interleave**
- **Two LUNs (0 & 1) per CS**
- **4KB Page size (transfer time is ~30us - 4096*7.5ns)**
- **Program time ~800us typical**
- **Dual plane support (T1 is transfer for plane 1 and T2 is transfer for plane 2)**

<table>
<thead>
<tr>
<th>CS0 LUN0</th>
<th>T1</th>
<th>T2</th>
<th>P (800us)</th>
<th>T1</th>
<th>T2</th>
<th>P (800us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS0 LUN1</td>
<td>T2</td>
<td>T1</td>
<td>P (800us)</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
</tr>
<tr>
<td>CS1 LUN0</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
</tr>
<tr>
<td>CS1 LUN1</td>
<td>T2</td>
<td>T1</td>
<td>P (800us)</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
</tr>
<tr>
<td>CS2 LUN0</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
</tr>
<tr>
<td>CS2 LUN1</td>
<td>T2</td>
<td>T1</td>
<td>P (800us)</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
</tr>
<tr>
<td>CS3 LUN0</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
</tr>
<tr>
<td>CS3 LUN1</td>
<td>T2</td>
<td>T1</td>
<td>P (800us)</td>
<td>T1</td>
<td>T2</td>
<td>P (800us)</td>
</tr>
</tbody>
</table>

- **860 us Program Cycle = One program time + two transfer times (800+30+30)**
- **64 Kbytes data written in one program cycle**
- **74 MBps Theoretical max throughput per program cycle**
- **20% controller and flash software overhead**
- **60 MBps estimated throughput**
- **Achieved twice the throughput with LUN interleaving**
The earlier examples were without any interface overhead

In Reality

- There is idle time required when:
 - we switch between devices, dies during an die-interleaving operation
 - we switch between chip enables during interleaving
- System integrator needs to look at a combination of array performance timing as well as the inter-command idle time to arrive at target achievable performance
High-Speed Controller Key Features

Key Toggle Features
- 63 and 83 MHz operation
- Multi Plane support
- Multiple I/O voltage
- I/O strength support
- Cache Read/write commands
- Programmable/Erase lockout during power transitions

Key ONFi 2.1 Features
- Discovery and Initialization
- LUN addressing
- Interlaced and non-interlaced addressing
- Source synchronous operation
- Staggered power up
- I/O strength support
- ONFi 1 modes 0,1,2,3,4,5
- ONFi 2 mode support 1,2,3,4,5
Flash Controller HW Architectures

Key Differences
- Flash command execution
- Interrupts
- Processor overhead
NAND Controller w PHY Support

- AHB Cmd/Data Interface
- Async Buffer
- AHB Initiator Interface
- AHB Port Register Interface
- Command and data
- Interrupt
- Data
- Register Information
- ECC
- Command Request
- DMA
- Map 00 Buff Access
- Map 01 Array Access
- Map 10 Control Access
- Map 11 Direct Access
- Sequencer/Status Module
- Link Layer
- ONFI 2/Toggle Soft PHY
- Internal Registers
- Interrupt
High-Speed NAND Challenges

- New NAND devices (e.g. Toggle NAND, ONFi 2.X) offer tremendous performance improvements over past solutions.
- Using old controller and firmware solutions will be unable to utilize this performance capability.
- Physical interface requires a more defined solution, not only for timing but for legacy support:
 - Multi voltage I/O’s
 - Programmable drive strength
- Latency in the controller will increase buffer overhead.
- Multi page size and ECC options need to be present in all HS applications.
PHY Architectural Overview

- Separate PLL
 - Use for multiple slices
- Soft PHY slice
 - Highly reusable
 - Flexible layout
- Test Logic for at-speed test
- No DLL reduces power and gate count. 4X clock at IO frequency

- Clock reference
 - Minimally buffered PLL input to slice for source synchronous domain
 - Normal clock tree for DFI, flop-to-flop timing

Available for SOC now, FPGA Support soon.
Soft PHY Solution

- Works with ONFi2 and Toggle as well as legacy flash
- Base design has been verified by DDR DRAM controller
- Process technology agnostic
- Scalable to many multiple channels
- Multiple drive strength support for new H.S device
- No DLL, simplified clocking methodology
 - No 3rd party core IP
 - I/O’s need to be supplied
- DQS to DQ valid = tDQSS < 0.10clk
- DQS to DQ invalid = tDH > 0.38clk
- DQS capture at 0.125clk, 0.25clk and 0.375clk
- Three valid capture points are available when we need only two for reliable capture because of pattern matching
8 Phase Read Capture Flash

- DQS to DQ valid = tDQSS < 0.092clk
- DQS to DQ invalid = tQH > 0.322clk
- DQS capture at 0.125clk, 0.25clk and 0.375clk
- No read capture points; Reason is tDQSS is larger than 0.125clk with I/O uncertainty normally used for flash (500ps), the second read capture point is valid, the third capture point is never valid
- This could be used if I/O uncertainty was less than 0.033clk at 100MHz or 330ps
16 Phase Read Capture Flash

- DQS to DQ valid = tDQSS < 0.092clk
- DQS to DQ invalid = tQH > 0.322clk
- DQS capture at 0.125clk, 0.1875clk, 0.25clk and 0.3125clk
- Four read capture points: the first and last may not be reliable due to I/O uncertainty, but the two middle capture points will always work with pattern matching
To maximize performance, new architectures and solutions are necessary to achieve the performance that the new High-Speed Flash devices offer.

High overhead software solutions will have difficulty achieving desired performance levels.

Trends in the Page size as well as ECC sector size will have an interesting effect for SSD and high capacity flash array applications.

It is possible to support both Legacy and High-Speed solution with one device.

The increase in commands and addresses will put more burden on the processor and the Host interface.