Enterprise NVMHCI
Enabling Enterprise Class PCIe SSDs with Unmatched Performance

Amber Huffman
Principal Engineer
Intel Corporation

Peter Onufryk
Director of Engineering
IDT

Special thanks to NVMHCI Workgroup Members for contributions & support.
Agenda

• PCIe SSD Opportunity & Value Proposition
• Why Enterprise NVMHCI
• Interface Attributes
• Queue Mechanism & Command Issue/Completion Path
• Commands & Arbitration
• Out of Order Data Delivery
• Firmware Update
• Security
• End-to-end Data Protection
• Summary
Gap in the Storage/Memory Hierarchy is Growing

NVM is filling the price/performance gap between DRAM and HDD, thereby creating the “I/O Memory Tier”
Platform native PCIe connectivity continues to rise. Enables PCIe SSDs to effectively fill the gap in I/O Memory Tier.
PCIe SSD Value Proposition

- The market is delivering PCIe SSDs to deliver unmatched performance
 - Plentiful PCIe lanes 36+ lanes
 - Stunning performance opportunity > 3 GB/s (PCIe Gen2 x8)
 - With PCIe scalability > 6 GB/s (PCIe Gen3 x8)
 - Lower latency µsec matter
 - Lower cost with direct attach Eliminate HBA cost
Enterprise Storage Tiers

<table>
<thead>
<tr>
<th>Storage Usage</th>
<th>Central Storage</th>
<th>Server Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>LBA cache</td>
<td>LBA cache</td>
</tr>
<tr>
<td>Performance</td>
<td>Hot Application Data</td>
<td>Hot Application Data</td>
</tr>
<tr>
<td>$/IOP, Latency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/IOP/GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/TB, Watts/TB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSDs of many flavors replace HDDs for high perf. storage for some apps (e.g. financial, DB). HDDs best for “data at rest” - Consistent $s/GB champ.

PCIe SSD attributes of high IOPs, high bandwidth, low latency, and lower cost are a great match to the emerging Cache Tier.

SSD performance enables new storage caching “IOPS tier”
- Many companies testing usage
- Application managed caching

Source: Tony Roug, Rex Peairs, Frank Hady, Roger Peene
Enabling Faster Adoption

- Analysts see a great opportunity for PCIe SSDs in Enterprise
 - Forecasts are from 10% to 40% of Enterprise segment in 2013

- A standard driver and consistent feature set will help place growth for PCIe SSDs on the faster curve

- Adoption inhibitors: Different implementation & unique drivers
 - Today, SSD vendors provide drivers for each OS that OEMs must validate
 - Today, SSDs implement different subsets of features in different ways

- To enable faster adoption and interoperability of PCIe SSDs, industry leaders are defining the Enterprise NVMHCI standard
 - Standard register programming interface & feature set definition
 - Enables standard drivers to be written for each OS
 - Enables interoperability between implementations shortening validation cycles

* June 2010 Estimates
The NVMHCI Workgroup includes 55+ members, focused on delivering streamlined NVM solutions.
The Value of Enterprise NVMHCI

“A standardized interface functions as a foundation, enabling a volume market for technology innovation while avoiding the compatibility issues that arise from multiple, proprietary interfaces. Enterprise customers are requesting standard interfaces be used on non-volatile-memory products as an enabler to assist broad adoption.”

Steve Olsson
Lead Program Manager, Storage and File Systems
Microsoft
The Value of Enterprise NVMHCI

“A standardized interface functions as a foundation, enabling a volume market for technology innovation while avoiding the compatibility issues that arise from multiple, proprietary interfaces. Enterprise customers are requesting standard interfaces be used on non-volatile-memory products as an enabler to assist broad adoption.”

Steve Olsson
Lead Program Manager, Storage and File Systems
Microsoft
Santa Clara, CA
August 2010

“The lack of a standard register level interface presents numerous problems when integrating PCIe SSDs into our products, including longer qualification times and functionality that is not uniformly implemented across vendors. Fujitsu Technology Solutions sees Enterprise NVMHCI as an important part of enabling broad adoption in PCIe SSDs emerging in the Enterprise space by resolving these concerns. Joining the working group was a natural choice to foster this industry leading standardization effort.”

Jens-Peter Seick
Senior Vice President x86 Server Product Unit
Fujitsu Technology Solutions
“A standardized interface functions as a foundation, enabling a volume market for technology innovation while avoiding the compatibility issues that arise from multiple, proprietary interfaces. Enterprise customers are requesting standard interfaces be used on non-volatile-memory products as an enabler to assist broad adoption.”

Steve Olsson
Lead Program Manager, Storage and File Systems
Microsoft

“The lack of a standard register level interface presents numerous problems when integrating PCIe SSDs into our products, including longer qualification times and functionality that is not uniformly implemented across vendors. Fujitsu Technology Solutions sees Enterprise NVMHCI as an important part of enabling broad adoption in PCIe SSDs emerging in the Enterprise space by resolving these concerns. Joining the working group was a natural choice to foster this industry leading standardization effort.”

Jens-Peter Seick
Senior Vice President x86 Server Product Unit
Fujitsu Technology Solutions

“New flash based storage devices are pushing the limits of traditional storage interfaces. The industry needs a new standard interface, to allow for multi-vendor innovation and take advantage of evolving flash technology and associated storage and platform architecture changes. We are working with other industry technology leaders to make Enterprise NVMHCI that interface.”

Paul Prince
CTO, Enterprise Product Group
Dell
Enterprise NVMHCI Goals & Timeline

- **Goals for standard:**
 - Address Enterprise usage scenarios
 - Enable an efficient & scalable interface, from very high-end to client
 - Ensure no interface impediments to exceeding > 1M IOPs
 - Enable OS vendors to deliver standard high performance drivers
 - Provide a consistent feature set to enable SSD interoperability
 - Reduce TTM for PCIe SSDs by enabling OEMs to validate/qual one PCIe SSD driver for each OS and one consistent feature set

- To get involved, join the NVMHCI Workgroup
 - Details at http://www.intel.com/standards/nvmhci

Revision Timeline

<table>
<thead>
<tr>
<th>Revision</th>
<th>Apr ’10</th>
<th>May ’10</th>
<th>Jun ’10</th>
<th>Jul ’10</th>
<th>Aug ’10</th>
<th>Sep ’10</th>
<th>Oct ’10</th>
<th>Nov ’10</th>
<th>Dec ’10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 0.5: Basic capabilities and approach defined.
- 0.7: Basic definition complete for all features. Feature freeze.
- 0.9: Erratum only.
- RC: Member review.
- 1.0: Published.

0.70 revision achieved, available for Contributor review. Schedule enables product intercept in 2012.
Example Optimization Point

- The Linux* stack using AHCI is ~ 35,000 clocks / IO
- A large impact is uncacheable reads, ~ 2000 clocks each
 - Minimum of 4 uncacheable reads required with AHCI

- Enterprise NVMHCI eliminates uncacheable reads for command issue and completion

System Configuration
- Intel® Xeon® X5570 2.93GHz
- 12GB, 1300MHz DRAM
- X25E, 32GB
- Linux 2.6.26
- 4KB random RD IO

Source: Intel internal analysis
Enterprise NVMHCI Attributes

Bucket 1: Eliminate performance bottlenecks seen in other interfaces.

- Remove uncachable reads from command issue/completion
- Minimize MMIO writes in command issue/completion path
- Support deep command queues
- Simplify command decoding and processing
 - Fixed sized (64B) command format
 - Avoid “pointer chasing”
 - Simple DMA scatter/gather list format
- Provide data usage hints to allow controller optimization of data placement
- Support MSI-X and flexible interrupt aggregation
Enterprise NVMHCI Attributes

Bucket 1: Eliminate performance bottlenecks seen in other interfaces.
- Remove uncacheable reads from command issue/completion
- Minimize MMIO writes in command issue/completion path
- Support deep command queues
- Simplify command decoding and processing
 - Fixed sized (64B) command format
 - Avoid “pointer chasing”
 - Simple DMA scatter/gather list format
- Provide data usage hints to allow controller optimization of data placement
- Support MSI-X and flexible interrupt aggregation

Bucket 2: Provides an efficient and streamlined command set.
- Do not carry forward HDD command set legacy
- Eight optimized NVM commands
- Efficient driver level translation into SCSI management architectures prevalent in Enterprise
- Support for atomic write size, always larger than a sector

Bucket 2: Provides an efficient and streamlined command set.
Enterprise NVMHCI Attributes

Bucket 1: Eliminate performance bottlenecks seen in other interfaces.
- Remove uncacheable reads from command issue/completion
- Minimize MMIO writes in command issue/completion path
- Support deep command queues
- Simplify command decoding and processing
 - Fixed sized (64B) command format
 - Avoid “pointer chasing”
 - Simple DMA scatter/gather list format

Bucket 2: Provides an efficient and streamlined command set.
- Do not carry forward HDD command set legacy
- Eight optimized NVM commands
- Efficient driver level translation into SCSI management architectures prevalent in Enterprise

Bucket 3: Provides Enterprise features.
- End-to-end data protection
 - (i.e., T10 DIF / DIX functionality)
- Firmware update
- Encryption
- Comprehensive statistics
- Health status reporting
- Robust error reporting & handling

Bucket 1:
Bucket 2:
Bucket 3: Provides Enterprise features.
Enterprise NVMHCI Attributes

Bucket 1: Eliminate performance bottlenecks seen in other interfaces.
- Remove uncacheable reads from command issue/completion
- Minimize MMIO writes in command issue/completion path
- Support deep command queues
- Simplify command decoding and processing
 - Fixed sized (64B) command format
 - Avoid “pointer chasing”
 - Simple DMA scatter/gather list format
- Provide data usage hints to allow controller optimization of data placement
- Support MSI-X and flexible interrupt aggregation

Bucket 2: Provides an efficient and streamlined command set.
- Do not carry forward HDD command set legacy
- Eight optimized NVM commands
- Efficient driver level translation into SCSI management architectures prevalent in Enterprise

Bucket 3: Provides Enterprise features.
- End-to-end data protection
 (i.e., T10 DIF / DIX functionality)
- Firmware update
- Encryption
- Comprehensive statistics
- Health status reporting
- Robust error reporting & handling

Bucket 4: Provides scalable architecture for now & the future.
- Support for many core systems
- Supports up to 2K MSI-X vectors
- Support for 64K commands per queue
- Up to 64K Submission & Completion Queues
- Up to 2^{32} outstanding commands to a controller
- Submission & Completion Queues may be mapped on a page basis
- Not tied to any specific NVM technology
Paired Queue Mechanism

1. Host Writes Command to Submission Queue Entry
2. Host Writes Doorbell Signaling New Command
3. Controller Fetches Command
4. Controller Executes Command
5. Controller Writes Completion Entry and Releases Submission Queue Entry
6. Controller Generates Interrupt
7. Host Processes Completion Entry
8. Host Writes Doorbell To Release Completion Entry

Submission Queue Tail Doorbell
Submission Queue
Completion Queue
Completion Queue Head Doorbell

Enterprise NVMHCI Controller
A submission queue (SQ) is a circular buffer with a fixed slot size of 64B that the host uses to submit commands for execution.

The host updates an SQ Tail doorbell register when there are 1 to n new commands to execute.

- The old SQ Tail value is simply overwritten in the device.

The device reads SQ entries in order and removes them from the SQ, then may execute those commands out of order.

![Submission Queue Diagrams](image-url)
A completion queue (CQ) is a circular buffer with a fixed slot size of 16B that the device posts status to for completed commands.

The device identifies the command that completed by the SQ Identifier and the Command Identifier (assigned by software).

The latest SQ Head pointer is returned in the status to avoid a register read for this information.

The Phase (P) bit indicates whether an entry is new, and inverts each pass through the circular buffer.

Completion Queue Entry

- Command Specific Dword
- Reserved
- SQ Identifier
- SQ Head Pointer
- Status Field
- Command Identifier
- P
Admin and I/O Queues

- The Admin queue carries out functions that impact the entire device
 - E.g. Queue creation and deletion, command abort

- The driver creates the number of I/O queues that match the system configuration and expected workload
 - E.g. On a four core system, devote a queue pair per core to avoid locking and ensure structures are in the “right” core’s cache
 - Architecturally supports up to 64K I/O submission and completion queues

Diagram:

- **Controller Mgmt**
 - Admin Submission Queue
 - Admin Completion Queue

- **Core 0**
 - I/O Submission Queue 1
 - I/O Completion Queue 1

- **Core 1**
 - I/O Submission Queue 2
 - I/O Completion Queue 2

- **Core N**
 - I/O Submission Queue N
 - I/O Completion Queue N

Santa Clara, CA
August 2010
I/O Queue Mapping Flexibility

- The I/O Submission and Completion Queue mapping is flexible
 - Completion Queue selected when Submission Queue created
- Multiple Submission Queues may be mapped to a single Completion Queue
Management Commands for Queues & Transport

<table>
<thead>
<tr>
<th>Admin Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create I/O Submission Queue</td>
<td>Queue Management</td>
</tr>
<tr>
<td>Create I/O Completion Queue</td>
<td></td>
</tr>
<tr>
<td>Delete I/O Submission Queue</td>
<td></td>
</tr>
<tr>
<td>Delete I/O Completion Queue</td>
<td></td>
</tr>
<tr>
<td>Abort Command</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Event Request</td>
<td>Status & Event Reporting</td>
</tr>
<tr>
<td>Get Log Page</td>
<td></td>
</tr>
<tr>
<td>Identify</td>
<td>Configuration</td>
</tr>
<tr>
<td>Set Feature</td>
<td></td>
</tr>
<tr>
<td>Get Feature</td>
<td></td>
</tr>
<tr>
<td>Firmware Download</td>
<td>Firmware Management</td>
</tr>
<tr>
<td>Firmware Activate</td>
<td></td>
</tr>
<tr>
<td>Security Send</td>
<td>Security</td>
</tr>
<tr>
<td>Security Receive</td>
<td></td>
</tr>
</tbody>
</table>

I/O Commands for SSD Functionality

<table>
<thead>
<tr>
<th>NVM Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Data Transfer, Including end-to-end data protection & security</td>
</tr>
<tr>
<td>Write</td>
<td></td>
</tr>
<tr>
<td>Write Uncorrectable</td>
<td></td>
</tr>
<tr>
<td>Compare</td>
<td></td>
</tr>
<tr>
<td>Compare & Write</td>
<td></td>
</tr>
<tr>
<td>Dataset Management</td>
<td>Data Usage Hints</td>
</tr>
<tr>
<td>Flush</td>
<td>Data Ordering</td>
</tr>
<tr>
<td>Format NVM</td>
<td>Namespace Management</td>
</tr>
</tbody>
</table>

Santa Clara, CA
August 2010
All Enterprise NVMHCI controllers support round robin command arbitration.

A controller may optionally support weighted round robin with urgent priority class arbitration.
Enterprise NVMHCI reduces latency by allowing more efficient bus ordering and small commands to “slip in”.

Traditional storage interfaces

Enterprise NVMHCI
Enabling Efficient Out of Order Data Optimization

- Walking a scatter/gather list (SGL) to determine data start locations for portions of a transfer is inefficient.
- A fixed size SGL entry enables efficient out of order data & simplifies hardware.
- Better approach: Page lists
 - First entry contains an offset
 - “Middle” entries are full page in size
 - Last entry may be less than a page
- The 64B command includes two entries to optimize for 4KB & 8KB I/O
 - For a larger transfer, second entry points to a list of additional entries.

1st Entry
- Page Base Address
- Offset
- Page Base Address Upper

2nd Entry: 4KB unaligned or 8KB
- Page Base Address
- 00h
- Page Base Address Upper

2nd Entry: Pointer to Additional Entries
- PRP List Address
- 00h
- Page List Address Upper
Firmware Update Mechanism

- Firmware slots allows multiple images to be supported
 - Controller supports 1 to 8 slots

- Firmware update process
 - Download Firmware Image: controller transfers image from host
 - Replace Firmware: controller validates image & applies to selected slot
 - Activate Firmware: controller makes selected slot active
 - Firmware update occurs on next reset

- Firmware boot failure
 - Revert to previous active slot or baseline read-only image in slot 0
Trust and Security Services

- Security is crucial to NVM as a data-at-rest model
- Encryption and authentication architecture leveraged from existing SSD security concepts such as full drive encryption
 - Simple addition of Security Send and Security Receive to Enterprise NVMHCI command set
- A liaison is being established with the Trusted Computing Group to leverage standard security management
 - Standard architecture for policy-driven access control
 - Includes authentication, encryption, and lifecycle management (deployment to end of life)
End-to-End Data Protection

Traditional Storage System

Enterprise NVMHCI Storage System
End-to-End Data Protection with Hardware RAID

PCIe SSDs Using Enterprise NVMHCI

Host

Enterprise NVMHCI RAID Controller

PCIe

PCIe

PCIe

...
Data Protection Information

- **Data protection information associated with each sector**
 - Same format as DIF / DIX
 - Consumes first 8 bytes of metadata

- **Guard field**
 - CRC-16 as defined by T10 DIF
 - IP Checksum not supported

- **Application tag field**
 - Same definition as T10 DIF
 - May be used to disable checking of protection information (i.e., 0xFFFF)
 - Generally opaque data not interpreted by controller

- **Reference tag field**
 - Same definition as T10 DIF
 - May be used to disable checking of protection info (i.e., 0xFFFF_FFFF)
 - Incrementing value associated with sector address or value provided as part of command

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>MSB</td>
<td>Guard</td>
<td>MSB</td>
<td></td>
<td>Application Tag</td>
<td>MSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSB</td>
<td></td>
<td></td>
<td></td>
<td>Reference Tag</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Host Metadata Buffer: Organization / Transfer Options

Logical Organization of Sector Information

Data Buffer (PRP1 & PRP2)

- Data with Metadata in Separate Contiguous Buffer, “DIX Like”

Data Buffer (PRP1 & PRP2)

- Metadata as Part of Sector Data, “DIF like”
End-to-End Data Protection Options

- Functionally compatible with T10 DIF & DIX, including DIF Type 1, 2, and 3
- End-to-end protection configured per namespace with NVM Format command
- Controller may optionally “insert” and “strip” protection information

Santa Clara, CA
August 2010
Summary

- Enterprise NVMHCI fosters interoperability & faster adoption for PCIe SSDs
 - Standard OS drivers
 - Consistent Enterprise feature set
 - Reduced OEM validation and qualification

- Enterprise NVMHCI has been optimized for ultra high performance
 - Support for many core systems
 - Normal operation requires no reads from controller
 - Support for a large number of outstanding operations

- Enterprise NVMHCI is on track for completion this year enabling product intercept in 2012
 - 0.70 specification available now to NVMHCI members