Five Key Steps to High-Speed NAND Flash Performance and Reliability

Presenter
Bob Pierce
Five Steps to obtaining NAND Reliability and Performance

1. Utilizing Device commands and parameters
2. Architecture advancements
3. Error correction improvements
4. Maximizing Interface performance
5. Using Software and hardware to maximize objectives
Keys to Flash Device Performance

- Page Size increases
 - 2, 4, 8 K page size What is the impact to bit growth and addressing?
- Read, Write Cycles have been pretty stable
 - From 30 to 6 nsec range
- Key Timing Parameters
 - Trc, Twc, Tprog, Tr, Tbers
Critical Timing of NAND Flash

SLC/MLC Timing Trend of NAND Flash

- Program time
- Erase time

Flash Memory Summit 2010
Santa Clara, CA
Command and Architecture Improvements

- Multi Plane
- Bus turn-around time
 - Ability to transfer data
 - Multi device switch performance
- LUN Addressing
- Multiple Access capability
 - LUN addressing
 - Volume Support
- Cache Read
- Cache write
- Pipeline read
- Pipeline write
- Enhanced commands
- Higher Bus Speed (Toggle, ONFi 2)
System Performance Benefits

- **Enhanced commands**
 - Small Data Move command if supported, allows the host to transfer data to the page register in increments that are less than the page size of the device for both Program and Copy back operations.

- **Bandwidth**
 - Ability to utilize the larger page sizes

- **Reducing read and write page access cycles**

- **Command pipe lining**

- **Improving read modified write operation**
NAND component performance is determined by two elements:
- NAND array access time
- Data transfer across the bus

I/O time for NAND Page (tRC=20ns)
- 2K page: 42µs
- 4K page: 86µs

For legacy reads, performance is artificially limited to 40 MB/s
- Today for SLC NAND the I/O time is 2-4x the array transfer time

As NAND page sizes increase, latency becomes large
- Especially for small reads

NAND array read transfer time
- SLC: tR time is normally 20-25µs MAX
- MLC: tR time is normally 50µs MAX

I/O performance must be less than or equal to array performance for maximum sustained read throughput
Flash Memory System Performance

Performance

- **SLC Asynchronous Devices**
 - 8 Chip enables per channel
 - 10 Channels or Flash controllers
 - 4K Page size
 - Sequential Read 360MBps
 - Sequential Write 360MBps
 - Random Write 52MBps @8K transfer

- **SLC Synchronous Devices**
 - 8 Chip enables per channel
 - 5 Channels or Flash controllers
 - 4K Page size
 - Sequential Read 600MBps
 - Sequential Write 600MBps
 - Random Write 86MBps @8K Transfer

cadence®
Sequential vs. Random Operations

• **Sequential operation typical applications**
 • Card Based solutions USB, MMC etc
 • Storage of data, pictures, videos, boot image

• **Random Operations**
 • Embedded Systems
 • SSD’s
 • Caching
 • Storage of data, active memory access and storage.
• Typical Controller use more than one type of Error Correction i.e. 8 and 30 bits
• DSP and LDPC (Low Density Parity Check Code) are typically high latency Solutions
• BCH (Bose and Ray-Chaudhuri) should be close if not at Line rate.
<table>
<thead>
<tr>
<th></th>
<th>BCH</th>
<th>Long BCH</th>
<th>LDPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decoder Throughput</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Gate Counts</td>
<td>Small</td>
<td>Medium</td>
<td>Large</td>
</tr>
<tr>
<td>Overhead Size</td>
<td>Very Small</td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>Error Correction Capability</td>
<td>Limited</td>
<td>Better</td>
<td>Best</td>
</tr>
</tbody>
</table>
Cadence Nand Controller w PHY Support

- Map 00 Buff Access
- Map 01 Array Access
- Map 10 Control Access
- Map 11 Direct Access

AHB/AXI Cmd/ Data Interface
Async Buffer
DMA
Command Request
Sequencer/ Status Module
ECC
AHB/AXI Initiator Interface
AHB/AXI Port Register Interface
Internal Registers
Interrupt

Command and data
Interrupt
Data
Register Information

Link Layer
ONFI 2/Toggle Soft PHY
Centralized LDPC Hardware Architecture

- Processor
- Host Interface Controller
- RAM Controller
- Multi-Port Arbitration Unit
- BUFFER

- CMD & DATA DMA
- NAND Controller Channel 1
- ECC, CRC Other

- CMD & DATA DMA
- NAND Controller Channel 2
- ECC, CRC Other

- CMD & DATA DMA
- NAND Controller Channel n
- ECC, CRC Other

- 1 … x controller channels

- Host Interface Controller
- DMA

- PHY

- NAND Devices

- 1 … x NAND Devices

- PHY

- 1 … x NAND Devices
Key Aspects to System Performance Improvements

- Increase the number of commands to the flash device
 - Maximizes the number of transactions that a device can do
 - Toggle NAND is capable of 125% more Read bandwidth over typical asynchronous devices

- Fast error correction and identification of errors
 - Improves block management throughput
 - Reduces processor overhead

- Reduce Interrupts to processor
 - Improves the number of transactions, address translation
 - Improves ECC performance
 - Improves background process operation
 - Removes software timer requirements
Performance System Architecture

Applications
- SSD Controller
- UFS
- Cache Controller
- Enterprise

Host Controller
- High Speed ECC
- Central LDPC
- 32 Bit Processor
- WL, Blk. Policy

DRAM

ONFi 2 / Toggle

• Highest Performance
• Most flexibility for Block Policy
• Architectural Flexibility
• Highest Error Correction Solution
• Command Q to maximize Bus utilization

Host Controller
- Block Management
- Wear Leveling

Corrected NAND

• Reduced HOST Resources
• Known good Data
• Higher data latency
• Easier to keep up with shrink Path
• Less flexible for block policy

Host Controller
- 16 bit Controller
- Wear Leveling
- Min. Block Mgr.

NAND

• High Latency
• Poor Random performance
• Block management slow
• Hard to keep up with HS Flash
• Basic ECC operation
• Low write count

Card based
- USB 2/3
- MMC

SRAM

• SSD Controller
• HS USB 3.0
• Cache Module

32 But Processor
- SRAM
- ECC, DSP

• High Performance
• Most flexibility for Block Policy
• Architectural Flexibility
• Highest Error Correction Solution
• Command Q to maximize Bus utilization
Five Trends to watch

1. Nand Device architectures and commands have to continue to improve. Array performance is degrading, command and architecture improvements must continue.
2. ECC Solutions are more complex and have become the cornerstone to improved data reliability and Block Policy management.
3. New controller architectures must continue to evolve based on system requirements and complex NAND architectures. (One size not fit all)
4. Interface data rates have to increase to maximize multi chip transfer rates and increase throughput. (higher transfer rate)
5. Software complexity utilizing new error correction methods are more complex, NAND management is comprised of multiple solutions all requiring some decision properties.