Designing Enterprise SSDs with Low Cost Media

Jeremy Werner
Director of Marketing
SandForce
Everyone Knows…

• Flash is migrating:
 ► To smaller nodes
 ► 2-bit and 3-bit MLC

• $/GB decreases due to increasing transistor density (lower geometries)
 ► Addressing demands of the consumer market

• Major trade-off in terms of reliability, endurance, and performance

• Yet more than ever organizations want lower cost flash in the Enterprise Computing market!

Source: Gartner June 2011
Stepping up to the challenge

- Enterprise SSD Technology enable analyst’s forecasted growth
- Full system ASIC and FW co-design is critical
- Advanced critical, required capabilities including:
 - Advanced Flash ECC
 - RAID-like protection
 - Soft Error protection
 - End-to-End CRC
 - Native non-512 Byte sector support
 - Write Reduction Technologies
 - Power-Fail Protection
 - Consistent Low Latency Performance
 - Temperature Intelligent Technology
 - Predictive Failure Capabilities
Advanced Flash ECC

- Today’s State of the art
 - High Powered BCH
 - Data Randomizer
 - Advanced Read-Retry
 - 512Byte and 1KByte code words

- 2013 Requirements
 - Soft and Hard LDPC (Low Density Parity-Check)
 - 10-100x more correction than traditional BCH
 - DSP-Aided Intra-cell and Inter-cell equalization
 - Adaptive code-rates
 - 2KByte code words

Example LDPC code using Forney's factor graph notation

Soft and Hard LDPC and DSP Challenges

• Enables remarkable bit error correction capabilities ~10% RBER but design challenges include:
 - Adequate Error Floor (10^-16 UBER)
 - Efficient Iteration Requirements (1-1.5x)
 - Very high throughput (>2GB/s)
 - Low Latency (<2us)
 - Low Power (Zero-power idle, 50-100mW active)
 - Small silicon footprint
 - Flexible code rates (BOL v. EOL adaptive)
RAID-like Protection

• SandForce introduced RAISE in 2009
 ▶ Redundant Array of Independent Silicon Elements
 ▶ Page and Block level protection against uncorrectable errors
 ▶ RAID-5 like protection (single uncorrectable per stripe)
• In 2013 more advanced RAID-like protection will be needed
 ▶ Multi-die failure
 ▶ RAID-6 like protection (two uncorrectable per stripe)
 ▶ Advanced internal rebuild capabilities
End-to-End Data Protection

- Data Protected at System Level by End to End Data Protection
 - Although older concept not universally adopted yet
 - T10 DIF (520-Byte Sectors) is the most common for SCSI devices
 - Also proprietary solutions
 e.g. 524, 528 Byte
 - 4K + DIF sectors coming
 - NVM Express has Data Integrity support for PCIe SSDs
- Critical to support the larger sectors without performance or ECC loss
- Also must handle fancy pattern generation to account for multiple heterogeneous host and initiator infrastructure

Source: T10 [http://www.t10.org/ftp/t10/document.03/03-224r0.pdf]
End-to-End CRC

• End-to-End Cyclic Redundancy Check (CRC) must be supported for Enterprise SSDs
 ▶ Pre-requisite to prevent silent data corruption
 ▶ Apply and Remove as early as possible
 ▶ Manage the remainder and handle errors

• A Good CRC solution is LBA seeded
• Data Protection inside the drive
 ▶ Can protects Flops in the data path from SER and other errors
Power Fail Protection

- Guaranteeing data integrity is difficult
 - MLC much harder than SLC
 - Lower Page Corruption is a gotcha
 - Getting more complex – more than 1 page can be corrupted
- Absolutely Required in Enterprise applications
 - Previously written data
 - Data in flight
- Use backup power to protect against sudden power loss
- Designing for no DRAM simplifies the solution
- Monitor supercap health to ensure capability

Source: Electronic Design: MLC Challenges Mobile-Entry Barriers
Mixed-I/O Latency Distribution

- Average Latency = OIO/IOPS (simple)
- The latency distribution is critical for Enterprise QoS
- MLC/3-bit harder to guarantee read latency
 - Longer program + erase times
 - More ECC recovery events
Data Retention

- The Arrhenius model is an industry standard for estimating data retention life of floating gate technologies
- Used to derive the acceleration factor between a stress temperature and a use condition
 - Can be used to de-rate data retention
- Acceleration Factor Equation (AF):

\[
AF = e^{\left(\frac{E_a}{k} \times \left(\frac{1}{T_{Use}} - \frac{1}{T_{Stress}}\right)\right)}
\]

- \(E_a \) is the intrinsic activation energy (eV)
- \(k \) is Boltzmanns’ constant
 - \(8.617 \times 10^{-5} \) eV/K
 - \(K = -273.16 \)° C
- \(T_{Use} \) = use temperature (K)
- \(T_{Stress} \) = stress temperature (K)

Data Retention Continued

• The Acceleration Factor highlights the potential differences between nominal and hot operation

• At 70° Celsius – Retention may be <1/35th of Retention at 40° Celsius
 ▶ 1 year becomes 10 days!

• Dynamic Read Scrub acts like a Flash refresh to ensure data retention when power is on

• Temperature aware technology can mitigate temperature and aid in optimizing management algorithms
Predictive Failure Analysis

• More intelligent large scale data centers, public and private cloud implementations are changing the classic paradigm
 ▶ Failures not catastrophic because of architectural data redundancies (country, data center, rack, server, drive)
• Willing to run way past warranty or specification
 ▶ Must be able to accurately predict drive failure
• Requires diagnostic, statistics and reporting features never capable on HDDs
 ▶ Up to the second reporting provides users a means to predict a failure
• Trade warranty liabilities for lower TCO and more intelligent usage model
Design for Media Flexibility

- Support for many flash devices is critical
 - Component availability fluctuates greatly
 - Early node support means lower cost and longer life!
- Every NAND is different
 - Makes solutions complex to design and qualify!
 - Page/Block size
 - Page/Block count
 - Spare Area
 - Planes
 - Commands
 - Interfaces
 - Reliability characteristics
 - Multi-LUN support
 - Performance/Response Times
 - Etc. etc. etc.

Visit the SandForce Exhibition Booth

World-class reliability, performance, & power efficiency for enterprise, client, and industrial SSD applications

- Visit us at booth #407 to see our DuraClass™ technology in action with the latest 24nm MLC flash technology and new non-HDD form factors like the JEDEC MO-300

- Stop by to enter our **free drawings** to win one of many different SandForce Driven SSDs from Corsair, Kingston, OCZ, OWC, Patriot Memory & Viking
 - Free drives given away approximately every 30 minutes!

- See other SandForce Driven™ SSDs in our partners’ booths

- Visit the many SandForce Trusted™ SSD ecosystem members