NAND Flash Architecture and Specification Trends

Michael Abraham (mabraham@micron.com)
NAND Solutions Group Architect
Micron Technology, Inc.
Topics

• NAND Flash Architecture Trends
• The Cloud and Clients
• Enterprise Application Requirements
• ECC and SSD Topologies
NAND Process Migration: Shrinking Faster than Moore’s Law

Santa Clara, CA
August 2012

Data based on publicly available information
Memory Organization Trends

- NAND block size is increasing.
 - Larger page sizes and more planes increase sequential throughput.
 - More pages per block reduce die size.
 - As ECC requirements increase, the spare area per NAND page is increasing.
Consumer-grade NAND Flash: Endurance and ECC Trends

- ECC improves data retention and endurance.
- Process shrinks lead to less electrons per floating gate.
- To adjust for increasing RBERs, ECC is increasing exponentially to achieve equivalent UBERs.
- ECC algorithms are transitioning from BCH to LDPC and codeword sizes are increasing.

![Graph showing endurance and ECC trends for SLC and MLC-2 storage technologies.](image-url)
Larger Page Sizes Improve Sequential Write Performance

- For a fixed page size across process nodes, write throughput decreases as the NAND process shrinks.
- NAND vendors increase the page size to compensate for slowing array performance.
- Write throughput decreases with more bits per cell.

![Diagram showing data bytes per operation and sequential programming throughput for SLC, MLC-2, and MLC-3.]
More Pages Per Block Affect Random Write Performance

- As block copy time increases, random performance decreases.
- Key factors that impact NAND Flash random write performance
 1. Number of pages per block
 2. Increase of tPROG
 3. Increase in I/O transfer time due to larger page sizes (effect not shown below)
- Impact to system product random performance
 - Some card interfaces have write timeout specs at 250ms.
 - To improve random performance, block management algorithms manage pages or partial blocks.
Larger Monolithic NAND Densities Increase Random Read Latencies

- Most applications favor read operations over write operations.
- Most read operations are 4KB data sectors.
- As monolithic NAND density increases, less NAND die are being used for a fixed system density.
- As tPROG increases, the latency of random 4KB sector reads becomes more variable in mixed-operation environments as the probability of needing to read from a die that is busy increases.

NAND Flash TAM by Density (Units)

<table>
<thead>
<tr>
<th>Density (GB)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 (32)</td>
<td>2011</td>
</tr>
<tr>
<td>128 (16)</td>
<td>2012</td>
</tr>
<tr>
<td>64 (8)</td>
<td>2013</td>
</tr>
<tr>
<td>32 (4)</td>
<td>2014</td>
</tr>
<tr>
<td>16 (2)</td>
<td>2015</td>
</tr>
<tr>
<td>8 (1)</td>
<td>2016</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>512Mb</td>
<td></td>
</tr>
<tr>
<td>256Mb</td>
<td></td>
</tr>
<tr>
<td>128Mb</td>
<td></td>
</tr>
</tbody>
</table>

4KB Random Read Latency

- **tR / tPROG**
 - 25 / 250
 - 25 / 300
 - 50 / 600
 - 50 / 900
 - 50 / 1200
 - 65 / 1500

- **Read Latency (µs)**
 - Min Latency
 - Max Latency
NAND Interface Trends for High-Performance Applications

- Applications
 - Have transitioned to 200MT/s interface
 - Beginning interface shift to 400MT/s

- Packaging
 - Typically BGA
 - 2 channel widely available
 - 4 channel being standardized

- ONFI 3.0 compatible components are available
The Cloud’s Impact on NAND System Architectures

Cloud: Long-term Data

Client: Near-term Data
Storage Comparison

- **Client Storage**
 - Information stored locally, on the device
 - Consumer or SSD grade NAND Flash

- **Cloud Storage**
 - Information stored in hosted server farms or data centers
 - SLC or Enterprise grade NAND Flash
Comparison of NAND Flash by Application Requirement

<table>
<thead>
<tr>
<th>Application Requirement</th>
<th>Client Storage / Consumer</th>
<th>Client Storage / SSD Grade</th>
<th>Cloud Storage / Enterprise Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAND Cell</td>
<td>MLC-2 → MLC-3</td>
<td>MLC-2 → MLC-3</td>
<td>SLC → MLC-2</td>
</tr>
<tr>
<td>Endurance / Cycling</td>
<td>Up to 3K</td>
<td>Up to 3K</td>
<td>Up to 100K (SLC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Up to 30K (MLC-2)</td>
</tr>
<tr>
<td>DPM</td>
<td>Consumer grade</td>
<td>Better</td>
<td>Best</td>
</tr>
<tr>
<td>I/O Channel Throughput</td>
<td>40 → 200 MT/s</td>
<td>40 → 400 MT/s</td>
<td>133 MT/s → 400 MT/s</td>
</tr>
<tr>
<td>UBER</td>
<td>1E-14</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Data retention at max cycling</td>
<td>1 year</td>
<td>1 year</td>
<td>Less</td>
</tr>
<tr>
<td>NAND Package Placements</td>
<td>Typically 1 to 4</td>
<td>4 to 16</td>
<td>Up to 32</td>
</tr>
</tbody>
</table>
How Do Enterprise Applications Meet Enterprise Requirements?

<table>
<thead>
<tr>
<th>Application Requirement</th>
<th>Controller</th>
<th>SSD/Enterprise-grade NAND Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher system density</td>
<td>Ability to handle many NAND Flash – some controllers up to 256 die</td>
<td>Lower DPM</td>
</tr>
<tr>
<td>More throughput</td>
<td>Page-based block management, DRAM cache, Overprovisioning, More I/O channels, Faster I/O channels, Multiple ECC engines, Simultaneous, mixed operations</td>
<td>Faster I/O channel</td>
</tr>
<tr>
<td>Low latency reads</td>
<td>DRAM cache, Use smaller monolithic NAND densities</td>
<td></td>
</tr>
</tbody>
</table>

Santa Clara, CA
August 2012
How Do Enterprise Applications Meet Enterprise Requirements? (Part 2)

<table>
<thead>
<tr>
<th>Application Requirement</th>
<th>Controller</th>
<th>SSD/Enterprise-grade NAND Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher endurance / reliability</td>
<td>Higher ECC</td>
<td>More ECC required, Lower UBER, Higher endurance</td>
</tr>
<tr>
<td>More consistent use over time</td>
<td>Balanced block management to reduce write amplification and provide even wear leveling so NAND die and blocks wear evenly</td>
<td></td>
</tr>
<tr>
<td>Power within budget for parallel operations</td>
<td>Block management throttles parallelism as needed</td>
<td>Peak power reduction</td>
</tr>
</tbody>
</table>
ECC and Algorithms

- Enterprise-grade NAND requires more ECC than consumer-grade NAND Flash to achieve higher endurance and lower UBER.
- Providing more ECC to a consumer-grade NAND Flash does not necessarily improve endurance, though it can improve data retention.
- ECC requirements are going to increase to the point that it will be a significant amount of real estate on a multi-channel controller.
How to Handle Increasing ECC?

- ECC is NAND Flash technology dependent and is implemented in hardware.
- Block management and drivers are not technology dependent and can be updated in software/firmware.
- ECC Free Solution:
 - Tightly couples ECC to the NAND technology.
 - Also covers NAND aggregation, reducing channel loading.
 - Block management performed in processor can use DRAM buffer and results in a higher performance than a fully managed solution.

Traditional Solution:
- Processor
 - Block Management
 - ECC
 - Driver
- NV-DDRx buses (up to 400MT/s)
 - NAND Discrete
 - NAND Discrete

ECC Free Solution:
- Processor
 - Block Management
 - Driver
- NV-DDRx buses (up to 400MT/s)
 - Controller
 - ECC
 - NAND
 - NAND Discrete
 - MCP

Fully Managed Solution:
- Processor
 - Driver
- Managed Interface (eMMC, SD, UFS)
 - Controller
 - Blk Mgmt
 - ECC
 - NAND
 - NAND Discrete
 - MCP
Questions?
About Michael Abraham

• Architect in the NAND Solutions Group at Micron

• Covers advanced NAND and PCM interfaces and system solutions

• IEEE Senior Member

• BS degree in Computer Engineering from Brigham Young University