Why Variable-Size Matters: Beyond Page-Based Flash Translation Layers

Earl T. Cohen
Flash Components Division
LSI Corporation
Flash Translation Layers (FTLs)

- Provide the dynamic mapping from Host Logical Block Addresses (LBAs) to addresses in flash
- In a desired granularity (e.g., block, page, …)
Some FTL Aspects

- Mapping of LBA (algorithm, granularity, …)
- Recycling (garbage collection)
- Wear-Leveling (Block Picking, Data Placement)
- Bad-Block Handling
- Performance / Overhead
- Checkpoint and Recovery Algorithms
Some FTL Performance Factors

- **Read/Write overhead to use/maintain FTL**
 - Flash bandwidth consumption, incl. write amplification
- **CPU processing overhead**
- **Wake-up time (what must be loaded at power-on)**
 - How quickly after power-on is user data accessible?
- **Unsafe shutdown recovery time**
 - How long to restore the FTL after a power fail?
Typical FTL Components

- **Map**
 - A means to convert LBAs to NAND addresses

- **Meta-data**
 - Generally stored in-band with user data, such as storing the LBA with the data itself
 - LBA stored with data acts as a “reverse map” – used for recovery

- **Logs/Journals**
 - Used in some FTLs to record changes to the map
Traditional Block-Based FTLs

- LBA MSBs -> Block
- LBA LSBs -> within block
Newer (Sub-)Page-Based FTLs

- LBA MSBs -> unit within page (e.g., 4KB)
- LBA LSBs -> within unit (e.g., sector)
Issues with these Approaches...

- **Block-based too coarse a granularity**
 - Write amplification way too high – writing 4KB re-writes an entire block

- **Sub-page-based ties the data size to be an integer divisor of the flash page size**
 - What happens with non-512B sectors?
 - What if the data size is variable?
 - What happens if ECC requirements differ from the spare size (either more or less)?
Solution: Variable-Sized FTLs (VFTLs)

- LBA MSBs -> Byte Address and Length
- LBA LSBs -> used to extract data
Byte Address and Length???

- Byte address and length is a lot of bits!
 - 256GB device has 38-bit byte address
 - 4KB granularity requires 12-bit length
 - 50 bits total per map entry

- Compared to 4KB granularity sub-page map: 38-12 = 26 bits per map entry

- To close this gap, use ECC unit address!
 - Rather than byte address
What is an ECC Unit?

- Flash page sizes are larger than the Error-Correcting Code (ECC) sizes used
 - 8KB or 16KB flash pages
 - vs. typical 1KB BCH codes

- Multiple ECC units (codewords) per flash page
 - The ECC unit is the smallest portion that can be independently read and corrected
How to map the LBA to data location in flash?

- Any access must read an integer # of ECC units
- Only need to point to first one and how many
ECC Unit Address and Span

- For 256GB drive, byte address and length for a 4KB unit was 50 bits
- With 4KB mapping, 2KB ECC units, span in ECC units is just 1 bit
 - Map cost is 38-11+1 = 30 bits
 - vs. 26 bits for the simple, sub-page map
- But we still need to find the data in the ECC units…
 - Data is preferably not aligned with ECC units
Extracting the Data in the ECC Units

- Header at start of ECC unit defines data in that ECC unit
- Data can span ECC units
Nothing is Free: Costs of VFTLs

- Map entry size increase
- Writing variable-sized data (span flash pages)
- Finding data within ECC units
- Free space tracking complexities
- Recycling interactions
- ...
- The SSD Processor must be designed from the ground up to support Variable-Sized FTLs
Benefits of VFTLs

- Great flexibility in flash support
 - Non-binary user portion of flash page
 - Great flexibility in how spare is used and how much or little is used for ECC (decouples ECC code rate)

- Enables non-power-of-two sector sizes

- Enables data reduction (e.g., compression)
 - The storage used by an LBA can be arbitrary
 - No wasted space – every byte is used
 - Decreases write amplification, increases longevity
LSI is Accelerating Mobile Computing at the FMS 2012!

Visit us at the booth 624-626 to:

• Experience the latest SandForce Driven™ Ultrabook™ systems

• See a live demo of the SandForce Driven Kingston USB SSD with Windows To Go

• Enter to win:
 - SandForce Driven SSDs from SuperSSpeed, Kingston, Corsair, Adata, EDGE, Mushkin, OWC, PNY, DMS, Patriot Memory and Wintec
 Up to 4 winners every 30 minutes!
 - Grand Prize – the latest SandForce Driven ASUS Zenbook Prime!
 Don’t miss the drawing on Wednesday 8/22 @ 6:30pm