SSD Architecture for Consistent Enterprise Performance

Gary Tressler and Tom Griffin
IBM Corporation

August 21, 2012
SSD Architecture for Consistent Enterprise Performance - Overview

• **Background:**
 - Client feedback indicates that traditional approach to managing SSD operations and maintenance activities concurrently is *no longer acceptable* (e.g., minimizing avg. maximum response per interval)
 - Enterprise users beginning to pursue 24/7/365 SSD-driven business operations – response time interruptions not tolerable throughout SSD lifetime

• **New Approach:**
 - SSD must provide consistent performance over its designated life span
 - All SSD maintenance activities must be managed in background
 - SSD performance may need to be sacrificed to a limited extent to achieve these goals
SSD Architecture for Consistent Enterprise Performance - Overview

• Examples of Required Enterprise SSD Operation Profile
 • **Background operations** should be performed continuously, and require a consistent level of throughput, or always done in low priority (never consuming an appreciable amount of host bandwidth)
 • No background task should take high priority if sufficient idle time not available
 • Relocation algorithms due to read disturb mitigation and wear leveling must operate consistently and constantly and should not result in large spikes or dips in host performance
 • Any **power backup circuit** check (e.g., capacitance monitoring) cannot ever stall the host
 • **Garbage collection and free space reclamation** should be managed in such a way that critical limits in free resources that will likely result in large stalls or host performance dips are not reached
 • **ECC correction** circuitry must have sufficient bandwidth to maintain performance with increased need to correct sectors as SSD ages
 • Must ensure that **mixed read and write workloads** do not dip below IOPs level that 100% reads or 100% writes can achieve
 • e.g., reads should not be gated behind large writes
 • Must be mindful of performance differences resulting from **workload changes** depending on level of preconditioning
 • All types of **software locks** should be done in such a way to minimize stalls to specific I/O
Performance Consistency Characterization Experiment #1

JEDEC Enterprise Workload
- 3 random workloads
 - Transfer size mix
 - 512B (4%)
 - 1KB (1%)
 - 1.5KB (1%)
 - 2KB (1%)
 - 2.5KB (1%)
 - 3KB (1%)
 - 3.5KB (1%)
 - 4KB (67%)
 - 8KB (10%)
 - 16KB (7%)
 - 32KB (3%)
 - 64KB (3%)
 - Max. I/O rate, QD = 32, incompressible data
 - 5s measurement intervals
 - Workload mix:
 - #1 (50% overall workload skew, 5% drive range)
 - #2 (30% overall workload skew, 15% drive range)
 - #3 (20% overall workload skew, 80% drive range)

Characterization Environment
- PC-based
- Windows 7
- LSI HBA
- Various Enterprise SSDs
 - SAS, SATA
 - 2.5" SFF, 1.8" SFF
 - Different capacities

Note: Average Maximum Latency (AvgMaxRT_5sInt) = the average of the maximum latencies reported by exerciser where each maximum latency is recorded at a 5s interval.

Testing
- Continuous iteration of above workload as follows:
 - 8-hour run at 100% write
 - 8-hour run at 40/60% RW mix (defined JEDEC Enterprise workload)
 - Initial 24-hr. preconditioning with JEDEC Enterprise workload (100% write)
Entry enterprise SSD demonstrates fairly even throughput and avg. latency, but avg. max. and max. latencies are poor and degrading.
1.8” SATA – Performance Consistency Experiment #1

SSDs show relatively stable average response time (and throughput) over approx. 350 hour test.

SSD A shows increased volatility in latter portion of 350 hour maximum response time test.
2.5” SAS – Performance Consistency Experiment #1

- SSD B demonstrates highest throughput, C shows lowest
- SSD B demonstrates lowest average latency, C shows highest
- B shows largest magnitude and deviations in maximum latency, while C demonstrates even result
- Users may need to evaluate tradeoffs between throughput/average latency and maximum latency
Disk Life Span / Performance Consistency Experiment #2

Testing Iteration
1. Sequential Write – 24 hours
 - 128K, Max IO rate, QD = 32, Incompressible data
 - 2m measurement intervals

2. JEDEC Enterprise Workload – 1 hour
 - 3 Mixed RW random workloads
 - RW = 40/60%
 - Transfer size mix
 - 512B (4%)
 - 1KB (1%)
 - 1.5KB (1%)
 - 2KB (1%)
 - 2.5KB (1%)
 - 3KB (1%)
 - 3.5KB (1%)
 - 4KB (67%)
 - 8KB (10%)
 - 16KB (7%)
 - 32KB (3%)
 - 64KB (3%)
 - Max IO rate, QD = 32, Incompressible data
 - 5s measurement intervals
 - Workload mix:
 - #1 (50% overall workload skew, 5% drive range)
 - #2 (30% overall workload skew, 15% drive range)
 - #3 (20% overall workload skew, 80% drive range)
• Although throughput and avg. response improve, max. latency peaks increasingly evident over 62 hr. test (approx. 1500 hrs. seq. write incl.)
Testing Iteration
1. Sequential Write – 24 hours
 - 128K, Max IO rate, QD = 32, Incompressible data
 - 2m measurement intervals

2. JEDEC Enterprise Workload – 1 hour
 - 3 Mixed RW random workloads
 - RW = 40/60%
 - Transfer size mix
 - 512B (4%)
 - 1KB (1%)
 - 1.5KB (1%)
 - 2KB (1%)
 - 2.5KB (1%)
 - 3KB (1%)
 - 3.5KB (1%)
 - 4KB (67%)
 - 8KB (10%)
 - 16KB (7%)
 - 32KB (3%)
 - 64KB (3%)
 - Max IO rate, QD = 32, Incompressible data
 - 5s measurement intervals
 - Workload mix:
 - #1 (50% overall workload skew, 5% drive range)
 - #2 (30% overall workload skew, 15% drive range)
 - #3 (20% overall workload skew, 80% drive range)
1.8” SATA – Disk Life Span / Performance Consistency Experiment #3 Results

- Performance throttling engaged

N – performance throttling disabled
X – performance throttling enabled

- User must be aware of background lifetime throttling mechanisms that can surface and impact performance
- Although throughput/average latency degrade with throttling, avg. max. latency (and it’s standard deviation) improves
SSD Architecture for Consistent Enterprise Performance – Next Steps

- Continue to monitor ongoing experiments for inconsistent performance / long latency events and trends

- Pursue root cause investigation of long latencies to determine how these events can be better managed in SSD background operations

- Perform additional experiments to better evaluate aging SSD and end-of-life scenarios to characterize likely performance consistency impacts

- Initiate SSD performance consistency characterization within RAID configurations to better analyze read/write tradeoff behaviors that likely exist within a real system environment
SSD Architecture for Consistent Enterprise Performance – Summary

• The traditional approach for managing background operations of enterprise SSDs is no longer acceptable
 • Clients beginning to pursue 24/7/365 SSD-driven operations

• Background operations should be performed continuously, and require a consistent level of throughput, or always done in low priority (never consuming an appreciable amount of host bandwidth)
 • Key examples are – relocation algorithms due to read disturbs, garbage collection/ free space reclamation and ECC correction for aging SSDs

• Extensive characterization likely required to appropriately evaluate SSD performance consistency
 • Long duration testing and consideration of various conditions/scenarios throughout SSD life

• SSD throughput and average latency are not always good indicators of consistent SSD performance
 • Maximum and average maximum (per interval) latencies are key parameters to evaluate

• Background lifetime / performance throttling mechanisms will likely impact SSD performance consistency and must be thoroughly characterized