Memory Modem™ FTL Architecture for 1Xnm / 2Xnm MLC and TLC NAND Flash

Hanan Weingarten, CTO, DensBits Technologies
Outline

• Requirements
• 1xnм/2xnм TLC NAND Flash Reliability Challenges
 • Reliability
 • BER Vs Endurance Vs Retention
 • Read / Program Disturbs
 • Integrity
 • “Ungraceful” power down
• DB3610 Memory Modem™ FTL Layered approach:
 • Lower Layer – Physical level reliability
 • Upper Layer – Memory management
Requirements

• Data Integrity and Reliability

• High Performance
 • Throughput
 • IOPs

• Low Power
 • Mobile devices
1xnm/2xnm Reliability Challenges (1)

• Bit Error Rate (BER) Vs Endurance Vs Retention:
1xnm/2xnm Reliability Challenges (2)

• BER Vs Endurance Vs Retention:
 • BER can go as high as 5e-2
 • Even without retention BER goes quickly up (1e-2)
 • 4x-5x factor in BERs due to retention

• ECC requirements
 • Near optimal reliability – close to theoretical bounds
 • Perform both hard and soft decoding
 • Optimal and high performance hard decoding
1xnm/2xnm Reliability Challenges (3)

- Retention effect:
 - Lobe widening
 - Lobe shift
1xn/m/2xn/m Reliability Challenges (4)

• Read Disturbs
1xn/m/2xn/m Integrity Challenges

• Power down scenarios
 • Managed power off
 • Required data-bases are stored prior to power down
 • Sudden power off between transactions (graceful power off)
 • All written data are recoverable through meta-data
 • Sudden power off within a write transaction (ungraceful power loss)
 • All data except for last (interrupted) transaction must be recovered
 • Past data may be damaged due to interruption
DensBits Memory Modem™ (1)

- DB3610 eMMC/SD Controller Functional Diagram
DB3610 Memory Modem™ (2)

- Memory Modem™ for Flash memories improving reliability, enabling smaller process nodes and more bits per cell
 - Proprietary ECC
 - Proprietary DSP
 - Proprietary Management
DB3610 Memory Modem™ (3)

- FTL Layered approach

![FTL Diagram]

- Higher Layer
 - Wear Leveling
 - Data Mapping
 - Bad Block handling

- Lower Layer
 - Virtual NAND dies
 - Virtual erase blocks
 - Virtual program pages
DB3610 Memory Modem™ (4)

• FTL Layered approach
 • Lower layer
 • Handles the data
 • Responsible for presenting a reliable virtual FLASH to the upper layer
 • Includes main parts of memory Modem™:
 – ECC flow
 – DSP software
 – Low-level memory management:
 » Data allocation
 » Damaged page recovery following “ungraceful” power-down
• FTL Layered approach
 • Upper Layer
 • Handles control data
 • Data mapping
 • Wear leveling
 • Data integrity issues:
 – Bad blocks handling
 – Power-down recovery – control data
 – Scrubbing
 • Metrics for lower layer to improve decisions
 •
DB3610 Memory Modem™ (6) - ECC

• Features
 • **Configurable**, input parameters (set via software):
 • Block size: 0.5KB-8KB
 • Code rate: 0.5 - 0.99
 • **Slim design / low power**
 • Hard and Soft decoding
 • Hard decoding as standard operation, soft decoding at extreme, **guaranteeing reliability with low latency**
 • Per each block size and code rate, **near-optimal error correction**
 • Near Hamming bound (hard decoding theoretical limit)
 • Near Shannon bound (soft decoding theoretical limit)
DensBits’ ECC – Hard Decoding

Theoretical limit (Hamming bound)

DensBits’ ECC - hard decoding

<table>
<thead>
<tr>
<th>Block [Bytes]</th>
<th>Spare [Bytes]</th>
<th>Coding rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8K</td>
<td>1445</td>
<td>0.85</td>
</tr>
<tr>
<td>8K</td>
<td>908</td>
<td>0.90</td>
</tr>
<tr>
<td>8K</td>
<td>706</td>
<td>0.92</td>
</tr>
<tr>
<td>8K</td>
<td>512</td>
<td>0.94</td>
</tr>
<tr>
<td>8K</td>
<td>440</td>
<td>0.95</td>
</tr>
<tr>
<td>8K</td>
<td>340</td>
<td>0.96</td>
</tr>
<tr>
<td>8K</td>
<td>256</td>
<td>0.97</td>
</tr>
</tbody>
</table>
DensBits’ ECC – Soft Decoding

Theoretical limit (Shannon bound)

DensBits’ ECC - soft decoding
BCH(24, 1024)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

10⁻⁴

10⁻³

10⁻²

10⁻¹

10⁰

Input BER achieving output BER < 10⁻¹⁵

Coding rate

<table>
<thead>
<tr>
<th>Block [Bytes]</th>
<th>Spare [Bytes]</th>
<th>Coding rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8K</td>
<td>1445</td>
<td>0.85</td>
</tr>
<tr>
<td>8K</td>
<td>908</td>
<td>0.90</td>
</tr>
<tr>
<td>8K</td>
<td>706</td>
<td>0.92</td>
</tr>
<tr>
<td>8K</td>
<td>512</td>
<td>0.94</td>
</tr>
<tr>
<td>8K</td>
<td>440</td>
<td>0.95</td>
</tr>
<tr>
<td>8K</td>
<td>340</td>
<td>0.96</td>
</tr>
<tr>
<td>8K</td>
<td>256</td>
<td>0.97</td>
</tr>
</tbody>
</table>

1Xnm MLC, TLC

2Xnm MLC, TLC
ECC FTL Flow

• Most common flow will perform hard decode
 • Enabled through hard decoding machinery
 • High performance

• Rare occasion, following retention, may require soft decoding
 • Performance price due to additional reads from flash memory
DB3610 Memory Modem™ (7) - DSP

• Optimized read parameters
 • Optimization of read parameters minimizing the input BER for the ECC
 • “Blind” threshold acquisition
 • Optimization of performance through:
 • Block-state tracking
 • Continuous block state updates
• Optimization of program parameters, depending on block state, minimizing tPROG
DSP FTL Flow

- Read Flow:
• Different page types may have different reliability:
 • Even / Odd pages
 • MSB / CSB / LSB pages

• Data allocation can significantly improve data reliability:
 • Striping / Interleaving
 • Variable rate coding
 • BER equalization
 • X2 improvement in BER
DB3610 Memory Modem™ (9)

• Upper Layer – Data Mapping
 • Hybrid block/page level mapping
 • High IOPs
 • Low WA
 • Can be accommodated in an embedded system
• Wear leveling
• Other reliability considerations:
 • SLC block allocation
Summary

• 1xnm / 2xnm NAND Flash controllers require a Memory Modem™ to obtain full reliability and performance
• A layered approach is a useful abstraction allowing handling various Failure mechanisms
The Future of NAND Flash Technology

Extreme Reliability, Unparalleled Performance
Thank You!